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Abstract 

This paper outlines some basic performance characteristics of the Transmission Control 

Protocol / Internet Protocol (TCP/IP) over Asynchronous Transfer Mode (ATM). It also discusses 

a few solutions to assure acceptable TCP/IP performance over ATM which are implemented by 

the industry the during the last couple of years. The conclusions in this paper are based on 

empirical TCP/IP performance test results collected on a DS3 ATM research testbed, architected 

with commercially available IP and ATM equipment. 

TCP/IP performance can vary widely and suffer significantly over ATM networks with large 

Bandwidth*Delay products. First, it is essential that the TCP window size matches the 

Bandwidth*Delay product of the end-to-end connection to fully utilize the bandwidth provided 

by the broadband network. Even if the window size meets this criteria, TCP performance can still 

be unacceptable, especially if the buffering within the ATM network is limited. A single limited- 

buffer bottleneck is sufficient to degrade the performance of a TCP connection when multiple 

traffic sources congest the bottleneck resource, such as in ATM networks with small buffer 

switches. One approach to assure acceptable TCP/IP performance is to limit the data rate into the 

bottleneck resource by exercising rate control at the entry to the ATM network. A better solution 

is to provide sufficient buffering within the ATM network. 

1 Introduction 

Asynchronous Transfer Mode (ATM) [1] is a scalable broadband switching and transport 

technology which has the capability to switch and transport multimedia information (i.e.voice, 

data, and video) simultaneously It is being considered by many segments of the computing and 

19980925 039 1 (201) 829-4725, isil@bellcore.com, MCC 1C-258B 
2 (201) 829-4348, tjb@bellcore.com, MCC 1G-233B 
3 (201) 829-3048, kri@bellcore.com, MCC 1C-213B 
4 No specific equipment is being endorsed. Tests were performed with available equipment in the lab. 
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communications industries to support current as well as future broadband services. 

To allow ATM and other networking technologies to be combined to become overall end-to- 

end services, it is necessary that the Internet Protocol (IP) [2] operate over ATM just as today's 

Internet operates over a wide range of different underlying network technologies. Using IP as the 

common denominator, the approach accommodates an increasingly diverse range of end-to-end 

applications such as enterprise networking and multimedia communications in a heterogeneous 

networking environment. To support this objective, one must ensure that TCP [3] /IP performs 

well over ATM network substrates. 

Being new, and quite different from the widely-used packet switching technologies based on 

broadcast-media (i.e. Ethernet, Token Ring, FDDI), ATM has experienced some lackluster support 

in some quarters of the industry in contrast to enthusiastic support from others. As a maturing 

technology, problems inevitably exist such as lack of fully developed standards, unoptimized 

performance, and not fully established, but evolving equipment. However, over the last few 

years, ATM has rapidly matured and most importantly has been enjoying widespread support for 

standards relating to IP. There are currently deployed, operational ATM networks exhibiting 

increased IP connectivity and traffic, reflecting the higher bandwidth demands of the networking 

community. 

This paper summarizes some performance characteristics of TCP/IP over ATM, and discusses 

some solutions offered in the industry towards improving TCP/IP performance over ATM. 

Experimental results are provided to support the main ideas presented. Although performance 

results over a DS3 ATM network are provided here, similar results and conclusions can be 

extrapolated for an OC3 ATM network. The results are presented in the form of performance 

curves plotting end-to-end TCP throughput versus maximum offered TCP window sizes. 

Section 2 of this paper describes the DS3 ATM testbed architecture and some specifics relevant 

to the performance tests and the test tools used. Section 3 briefly discusses the performance 

. impact of protocol overheads, and Section 4 presents baseline performance results measured over 

the ATM testbed. Next, based on experimental results, Section 5 describes the impact of 

congestion, on TCP/IP performance, at a DS3 ATM bottleneck with limited buffering and Section 

6 examines two industry-implemented solutions to rectify the resulting degradation in 
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performance. Finally, Section 7 summarizes the conclusions of this work. 

2 Testbed Architecture 

Figure 1 presents the architecture of the TCP/IP over DS3 ATM research testbed. It consists of 

a single ATM switch, three IP routers with direct DS3 ATM UNI [4] access to the switch and three 

high performance workstations, SGI Indigo2s, used as TCP/IP data sources and sinks. 

Each workstation is on a dedicated FDDI ring and has the capability to source and sink data at 

almost the full FDDI rate of 100Mbps. These workstations provide the desired data loading 

capabilities for the DS3 ATM UNIs in addition to two important capabilities necessary for efficient 

utilization and testing of large Bandwidth*Delay product networks: 1) Large TCP window sizes, 

and 2) MTU path discovery. The Indigo2s run the SGI's Unix Operating System Irix 5.3 which 

implements RFC 1323 [5], [6], the TCP extension that allows for extended TCP window sizes. Irix 

5.3 allows TCP window sizes up to 524,288 Bytes5 - sufficient to fully load and test DS3 (45Mbps) 

networks with Round Trip Delays (RTDs) up to 93 msec. Irix 5.3 also implements MTU path 

SGI Indigo2 

FDDIj 

Router 1 

SGI Indigo2 SGI Indigo2 

Figure 1   TCP/IP Over DS3 ATM Testbed 

5   Unix BSD4.3 supports up to 64 Kilobyte TCP windows. 16 Kilobyte windows are the most common. 
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discovery [7] and sets the TCP default maximum segment size (mss) to the minimum Maximum 

Transmission Unit (MTU) in the network (minus the TCP/IP header)6. In Figure 1, the FDDI MTU 

of 4352 Bytes (minus the 40 Bytes TCP/IP header) is used as the maximum TCP segment size. It 

is a well-known networking phenomenon to use the largest packet size possible while avoiding 

packet fragmentation, in order to reduce the per packet overhead at the hosts, and to attain the 

maximum throughput through the network [8], [9], [10], [11]. The TCP version implemented in 

the Irix 5.3 kernel is 4.3BSD/Reno that provides the Fast Retransmit and Fast Recovery algorithms 

[12] which are modifications to the original TCP congestion avoidance algorithm [13]. 

In the TCP/IP over DS3 ATM testbed displayed in Figure 1, two different ATM switches are 

used; one switch with a small number of cell buffers per port (on the order of a few hundreds) and 

the other with considerably larger cell buffers (on the order of a few tens of thousands). The ratio 

between the per port cell buffers of the two ATM switches is on the order of 100/1. Under full 

load, the two switches provide the TCP flows with significantly different performance 

characteristics as will be explained in Section 5. The traffic service tested on the ATM switches is 

the Unspecified Bit Rate (UBR); i.e. no traffic shaping or policing has been provided at either one. 

The three IP routers used in the experiments have ATM interfaces that provide direct DS3 ATM 

UNI access to the ATM switches. They have the capability to rate shape the data into the ATM 

network, either using Constant Bit Rate (CBR) or Variable Bit Rate (VBR) as defined by the ATM 

Forum [14]. In the absence of commercial Available Bit Rate (ABR) implementations, rate shaping 

ingress to the ATM network provides performance gains for UBR switches with limited buffers, 

as will be demonstrated in detail in Section 6.1. Rate shaping can alternatively be exercised at the 

source workstations by adjusting the inter-packet spacing. Network interface cards that perform 

rate shaping by varying the inter-packet gaps are available in the market for various workstations. 

The testbed used in this study provides rate shaping at the entry to the ATM network because of 

the type and availability of equipment employed at the time, it was not a matter of preference. 

An Adtech SX/13 Data Channel Simulator with DS3 interface was used to introduce additional 

network delay in certain tests. It has the capability of introducing RTDs up to 100 msec. The Data 

Channel Simulator, or Delay Generator, for testing purposes, is connected between the ATM 

6  TCP segment is the payload of the TCP packet. The joint TCP/IP header is 40 Bytes (without any options) 
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switch and Router_3 in Figure 1, since Router_3 is used as the sink router (thus S_3 as the sink 

station) in most of the test studies. In this way, the same network delay can be introduced for both 

sources, S_l and S_2, when two-to-one tests (two sources sending to the same sink) are conducted. 

2 • 1 Performance Tests and Test Tools - A Summary 
The performance tests carried out over the ATM testbed displayed in Figure 1 are either single- 

flow (one-to-one) or dual-flow (two-to-one) TCP performance tests, as permitted by the testbed 

architecture. These are throughput measurements of large TCP flows (single or dual) during each 

of which the maximum TCP window size offered is varied. In other words, each test corresponds 

to a long TCP session for which the throughput is measured when the maximum offered TCP 

window size is set to a certain value. The enforced window sizes range from 16 to 524 Kilobytes 

in 16 Kilobyte increments. For a maximum window size set, each TCP session lasts until 

81,920,000 Bytes (10,000 8192-Byte application PDUs (TCP payload)) are transferred which is 

sufficiently long to collect accurate measurements for the range of window sizes used. The 

measured TCP throughput values are plotted versus the range of maximum offered TCP window 

sizes, for each configuration under test, as presented in the rest of this paper. 

The throughput versus TCP window size measurements presented here were performed using 

a Bellcore shell script (written by Grenville Armitage) called ttcp-multi, which in turn uses a 

public domain performance tool, called ttcp [15]. ttcp-multi automates multiple consecutive ttcp's 

by incrementing the window size offered to each ttcp, checks the network statistics for TCP 

timeouts and retransmissions for each session, and post-processes the results for data 

presentation. The same set of tests were later repeated while tcpdump [16] was running in parallel 

to ttcp-multi in order to find out the exact details of data transmission for these TCP flows. 

During these tests, the Nagle algorithm [6] was disabled by setting the TCP_NODELAY [15] 

option to push data out to the link as fast as possible since these are bulk data transmission 

measurements. The Don't Fragment (DF) flag in the IP header was set on all the packets and Push 

(P) flag in the TCP header was set on every other packet, as observed by the tcpdump [16] output 

that ran in parallel to the repeated ttcp-multi tests. The tcpdump output also identified that 4096 

Bytes of data were being sent in each data packet, thus not really utilizing the maximum TCP 

segment size of 4312 Bytes. What was happening was the first 4096 Bytes of each application PDU 

Transport Protocols for High Speed Broadband Networks Workshop, 
Clnbernm'fifi Westminstpr T.nnHnn. T IK Nnvemher ?.?. 1996 ~ * ~ 



was being pushed into the link (P flag set) having disabled the Nagle algorithm [6], and the next 

4096 Bytes were sent out in the next TCP packet. For window sizes less than 61440 Bytes, the size 

of each TCP data packet was exactly 4136 (4096+40) Bytes, otherwise it was 4148 (4096+40+12) 

Bytes due to the 10-Byte TCP timestamp option added by the RFC 1323 implementation for 

extended window sizes, and the two 1-Byte No Operation (nop) options used to align the TCP 

packet in 4-Byte boundaries necessary for the 32-bit or 64-bit machines. The 3-Byte window scale 

option is only carried in the SYN packets of the connection establishment phase; not in the data 

packets themselves. So is the 4-Byte maximum segment size (mss) option which indicated 4312 

Bytes. 

3 Effects of Protocol Overheads 

ATM has been shown to be inefficient for IP datagram services [17] due to various overheads: 

• PLCP7 formatting (on average, the DS3 PLCP transmits a cell every 10.42 microseconds), 

• 5-Byte ATM cell header for each cell payload formed by segmenting the AAL58 packet, 

• 8-Byte LLC/SNAP9 header [18] encapsulating IP in AAL5 [19] and 8-Byte AAL5 trailer, and 
• Any AAL5 padding, necessary to divide the AAL5 packet evenly into 48-Byte cell payloads. 

Theoretically, the maximum cell payload throughput over a DS3 ATM network is 36.86 Mbps 

((53*8/10.42)*48/53). This is a total of 18% overhead just due to the ATM cell headers and PLCP 

framing. Since, the maximum IP packet that can be used in the testbed in Figure 1 is 4352 Bytes 

(FDDI MTU) as explained in the previous section, it corresponds to an AAL5 packet of 4368 Bytes 

(4368/48=91 cells without any AAL5 padding). Therefore, the maximum IP throughput is 

calculated as 36.72 Mbps (36.86*4352/4368). When the TCP/IP headers are also considered, the 

TCP data throughput falls further down to 36.39 Mbps (36.72*4312/4352), yielding a total of 19% 

overhead. The actual maximum TCP data throughput measured over the DS3 ATM testbed in 

Figure 1 is slightly less than this value calculated. This, of minor concern, is due to several reasons 

such as: 

• varying packet processing delays at the workstations (100 (isec to 5 msec), 
• the amount of AAL5 padding inserted in the TCP packets to align with cell boundaries, 

7 Physical Layer Convergence Protocol 
8 ATM Adaptation Layer 5 
9 Logical Link Control / SubNetwork Attachment Point 
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• the TCP/IP header being actually larger than 40 Bytes due to the TCP timestamp option 
RFC1323 implementations use with data packets, for extended TCP windows, (larger SYN 
headers due to options used with the SYN packets can be neglected since the data transfer 
phase is very long) 

• data packets being slightly smaller than the actual TCP maximum segment size negotiated 
during MTU path discovery. 
If the above theorethical calculations are repeated taking into account these reasons listed 

above, calculations yield very close values to the throughput values observed in the actual 

measurements. For example for the window sizes less than 61440 Bytes, the data payload of 4096 

Bytes (as tcpdump outputs reveal) means a TCP segment of 4136 Bytes, and an AAL5 PDU of 4176 

Bytes (87 cells) including some padding. This yields a TCP data throughput of 36.15 Mbps 

(36.86*4096/4176) and when the maximum segment size underutilization effect is taken into 

account, it is further reduced to 34.36 Mbps (36.15*4136/4352). For larger window sizes, the TCP 

segment is 12 Bytes larger, 4148 Bytes, and the same calculations yield 34.46 Mbps. 

4 Baseline TCP/IP over ATM Performance Tests 

Figure 2 and Figure 3 present two baseline performance tests for single-flow TCPs (from a 

single source workstation to a sink workstation, i.e. from S_l to S_3): first, through the small 

buffer ATM switch, and second, through the large buffer ATM switch respectively, in the testbed 

configuration in Figure 1. Both of these tests are performed under the exact same conditions; at 

full DS3 rates when no rate shaping is exercised by the source IP router (Router_l) at the ingress 

to the ATM network and when no additional network delay is introduced by the delay generator. 

These one-to-one or single-flow tests are important since they form a baseline for the following 

two-to-one tests which exhibit congestion. Full-load two-to-one tests cannot perform any better 

than these single-flow tests. The one-to-one tests characterize the amount of buffering at the 

ingress IP router, since there is no slower link ahead. The two-to-one tests are performed to assess 

the ATM switch behavior under congestion and to characterize the buffering in the switch which 

becomes the bottleneck resource for more than one flows. 

The following observations hold for both of these tests. RTD is around 1 msec and the packet 

processing delays range from 100 |xsec to 5 msec, which contribute to the overall delay. Thus, the 

Bandwidth*Delay Product is small compared to larger RTD networks and full utilization is 
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achieved at smaller window sizes resulting in the steep upward slope on the graph. The 

maximum observed throughput of 34-34.5 Mbps is sustained beyond 400 Kilobyte windows. The 

roughly 400 Kilobyte width of the high throughput section of the graph indicates the amount 

buffering in the source router (Router_l in this case, but all the routers are identical). Since a 

single-flow TCP session does not create a bottleneck over the ATM switch, the buffering in the 

ATM switch does not have a significance in these single-flow tests, as indicated with like 

performance with either of the switches (Figure 2 and Figure 3). The throughput collapses beyond 

400 Kilobytes due to several packet drops at the source IP router (overrun buffers) and subsequent 

TCP retransmissions. Both performance tests show throughput settling at similar throughput 

One-to-One TCPs via the Small-Buffer ATM Switch 
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Figure 2  Performance Tests for Single-Flow TCPs Through the Small Buffer ATM Switch with 
no Rate Control Exercised at the Entry to the ATM Network (RTD = 1 msec) 
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values, around 17-18Mbps beyond the collapse point. The glitch in Figure 3, around 260 Kilobytes 

is due to a few TCP retransmissions that occurred during that specific TCP session. However, such 

glitches due to a series of loss, timeout, retransmission events that degrade the performance are 

completely random, in other words the same glitch does not reoccur at different repetitions of the 

same test; such glitches are infrequent under no congestion cases. 

4»1 Effects of Additional Delay on Performance 
Figure 4 displays another single-flow TCP test through the small buffer ATM switch, with an 

additional 20msec delay introduced in the data path, as opposed to the test displayed in Figure 2. 

The objective of adding network delay, is to emulate high latency networks, thus to test long 

One-to-One TCPs via the Large-Buffer ATM Switch 
Throughput/Mbps 

35 00 J | | 1)S3: S_l to S_3 : No Rate Shaping 

34.00 

33.00 

32.00 

31.00 

30.00 

29.00 

28.00 

27.00 

26.00 

25.00 

24.00 

23.00 

22.00 

21.00 

20.00 

19.00 

18.00 

17.00 

16.00 

15.00 

1 1/ 
V 

I 

J 
f 
i 

1 1 

Maximum TCP Window /Bjrtes x 103 

0.00 200.00 400.00 

Figure 3  Performance Tests for Single-Flow TCPs Through the Large Buffer ATM Switch with 
no Rate Control Exercised at the Entry to the ATM Network (RTD = 1 msec) 
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delay paths. With added delay, Bandwidth*Delay product of the data path increases, requiring 

larger windows to fully utilize the link.The rule of thumb for TCP/IP networks is that 100% link 

utilization, thus maximum throughput, is achieved when the TCP window size matches the 

Bandwidth*Delay product of the data path, where Bandwidth is the capacity of the slowest link. 

Since the maximum attainable throughput is reached at a higher window size for a larger 

Bandwidth*Delay product path, the effect of additional delay is a smaller slope on the throughput 

versus window size graph in Figure 4 compared to that in Figure 2. However, the amount of 

buffering within the physical equipment over the data path is independent of the network delay, 

and the width of the high throughput section is the same on both of the graphs. In fact, this width 

One-tQ-One TCPs via the Small-Buffer ATM Switch (RTD=21msec) 
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Figure 4 Performance Tests for Single-Flow TCPs Through the Small Buffer ATM Switch with 
no Rate Control Exercised at the Entry to the ATM Network (RTD = 21 msec) 
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directly indicates the amount of bottleneck buffering (i.e. buffering in the ingress router) over the 

data path. Consequently, additional delay also shifts the throughput collapse point, i.e. the 

window size at which the bottleneck resource overflows its buffers and degrades the throughput. 

In summary, with a higher RTD, the window sizes at which maximum throughput is reached, 

and throughput collapses, are larger than those with a lower RTD. 

5 Impact of Congestion 

Unlike the results presented in Figures 2,3 and 4, TCP performance can vary widely and suffer 

significantly if multiple traffic sources congest a bottleneck link with limited buffering. Figure 5 

Twi-to-One TCPs via the Small-Buffer ATM Switch (RTD=21msec) 
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Figure 5  Performance Tests for Two-to-One TCPs Through the Small Buffer ATM Switch with 
No Rate Control Exercised at the Entry to the ATM Network (RTD = 21 msec) 
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displays the results of such a performance test in which two TCP sources simultaneously send to 

the same sink (i.e. from S_l and S_2 to S_3) through the small buffer ATM switch, when there is 

no rate control exercised at either of the source routers (Router_l and Router_2). In this test, two 

DS3 sources at full rate, congest the outgoing DS3 ATM port (towards Router_3) over the switch, 

and since the switch has limited cell buffering, it starts to drop cells from either one of the flows. 

Which TCP session is losing its cells is a random behavior, and performance results display 

various throughput degradation effects as will be explained in detail. 

The performance test displayed in Figure 5 is performed using an additional 20msec delay 

introduced by the Delay Generator to more clearly depict the initial and acceptable performance 

characteristics, i.e. the initial slope where the throughput increases as the window sizes increase. 

During this time, both flows exhibit equal throughput values as the share of bandwidth assigned 

to each is also equal. They both reach a throughput of approximately 17.25Mbps (aggregate 

throughput is 34.5Mbps) at a window size approximately half the Bandwidth*Delay product (The 

two window sizes together are equal to the Bandwidth*Delay product). Thus, once the window 

sizes of both flows become large enough to fill the outgoing DS3 pipe and the small buffering in 

the ATM switch runs out, both flows start to lose cells at a high rate. Thus, both flows' congestion 

control mechanisms [8], [13] commence and both switch into the slow start state quickly. Many 

cycles of slow start/congestion avoidance repeat until both flows finally finish the data transfer 

process. This is the synchronization artifact of TCP. However, as the TCP window sizes used 

become larger than 200 Kilobytes, a different artifact of TCP becomes apparent, and that is 

domination of one flow over the other. At such high window sizes, the burst of data arriving from 

either of the flows is much larger, and in most cases, the flow ahead of the queue manages to get 

through while the other one loses a lot of cells. Once that occurs, the leading flow dominates the 

other which has backed off and continues to back off until the dominating one finishes its session. 

Only then can the backed-off flow proceed faster; however, due to the difficulty in raising its 

congestion window much higher, it displays dismal throughput, much smaller than half the 

throughput of the other flow. This unfair behavior can work against either flow10; it is completely 

random, as exhibited in Figure 5; at certain window sizes, the S_l originated flow dominates, 

10  Domination effects are not clear on black-and-white. Authors can provide color graphs, if requested. 
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while during other times, the S_2 originated flow dominates. 

6 Possible Solutions 

The congestion-induced degradation in performance (due to synchronization) or unfair 

bandwidth utilization (due to domination) can be rectified in a number of ways. This section 

examines two possible solutions - source rate control and increased switch buffering - based on 

experimental results. These solutions are by no means the only methods that exist to overcome 

these problems. For example, there are ATM switches available in the market that implement 

Packet Discard algorithms (Early Packet Discard (EPD) or Partial Packet Discard (PPD)) discussed 

in various literature [20], [21]. There are ongoing experimental studies of these methods within 

Bellcore which are not available for publication at the present time. ABR switches will be able to 

address these problems as well, however they are just becoming available in the market. 

6» 1 Rate Control 
One way to assure acceptable TCP/IP performance for ATM networks with limited buffer 

switches is to control the amount of data into the ATM network, thus into the bottleneck resource. 

This can be provided by exercising rate control at the ingress to the ATM network, either at the 

data sources or the IP routers interfacing to the ATM network. As long as either provide adequate 

rate control and buffering, either should be effective. Experiments here are carried out using rate 

shaping at the IP routers. Rate shaping corrects the undesirable behaviors explained in Section 5. 

Figure 6 presents the results of such a performance test using the small buffer ATM switch 

during which CBR shaping is exercised at both source routers (Router_l and Router_2). The 

bandwidth assigned to each flow is limited to 20Mbps in this test, and an additional delay of 

20msec is introduced between the ATM switch and the sink router (Router_3) for direct 

comparison with the results displayed in Figure 5. 

Once the flows reach 16.5-17 Mbps maximum at the same window size as in Figure 5, they both 

sustain that level until the buffers on their source routers (Router_l and Router_2) start to 

overflow. Note that the width of the high throughput section of the graph in Figure 6 is equal to 

those of the graphs in Figures 2, 3, and 4 and is indicative of the amount of buffering provided by 

the ATM interfaces of the ingress routers as indicated earlier. The glitch in Figure 6 is also due to 
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a random sequence of loss, timeout and retransmission events as for the glitch in Figure 3. 

Figure 7 presents the results of another similar performance test using the small buffer ATM 

switch. The difference between Figure 6 and Figure 7 is that Figure 7 depicts VBR shaping at each 

of the source routers (Router_l and Router_2) and no additional delay is provided. The average 

bandwidth assigned to each flow is still 20Mbps, however the peak rate is set at 40Mbps. A small 

burst size equal to the FDDI MTU is used in this test. Since the 20msec additional delay is no 

longer used, maximum throughput is reached at very small window sizes (as in Figure 2 and 

Figure 3). Due to the VBR shaping, the throughput slightly increases as higher window sizes are 

used, unlike the flat throughput observed in Figure 6. The maximum throughput reaches 17-17.5 

T\ro-to-One TCPs via the Small-Buffer ATM Switch (RTD=21msec) 
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Figure 6  Performance Tests for Two-to-One TCPs Through the Small Buffer ATM Switch with 
CBR Shaping Exercised at the Entry to the ATM Network (RTD = 21 msec) 
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Mbps for each flow, thus an aggregate of 34.5-35 Mbps which confirms the calculations in Section 

3. Note that the buffering within the routers is the same (400 Kilobyte). 

As Figure 6 and Figure 7 demonstrate, the performance gain due to VBR shaping is not 

significant compared to CBR shaping with the use of small burst sizes. Unfortunately, large burst 

sizes are found to yield significant throughput degradation when multiple flows congest the 

small-buffer ATM switch, by sending large bursts of data simultaneously to the DS3 ATM 

bottleneck. This is expected since the peak rates are 40Mbps each. Unfortunately, the smallest 

peak rate to average rate ratio that can be set is 2 (a high oversubscription rate) due to the 

limitations of the commercial equipment available to this study at the time. A capability to choose 
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peak rates that yield smaller peak rate to average rate ratios should bring forth the advantages of 

leaky buckets for small-buffer ATM switches, and can then provide statistical multiplexing and 

improved performance with the use of larger burst sizes. Unfortunately, current inflexible 

implementations of the algorithm by the commercial equipment used does not help, and is 

potentially harmful under full load, for small-buffer ATM switches. 

Figure 6 and Figure 7 display the cases when the bandwidth assigned to each flow is equal. 

When the ratio of the bandwidths is not equal to one, the same behavior is observed except that 

the ratio of each flow's throughput is in proportion to the ratio of the bandwidths assigned. 

6*2 Sufficient Buffering 
Although rate shaping the streams at the entry to the ATM network is an effective solution, it 

requires provisioning parts of the total bandwidth for specific connections ahead of time (using 

Permanent Virtual Circuits (PVCs)). Since all the connections, for each of which a portion of the 

bandwidth is reserved, may not be active at all times, the active connections cannot utilize the 

unused bandwidth reserved for the inactive ones with CBR provisioning. Furthermore, VBR 

provisioning implemented in the IP routers is ineffective for small-buffer ATM switches. In 

addition, provisioning connections requires manual intervention. Switched Virtual Circuits 

(SVCs) will address these problems, however they are not available for the tests presented here. 

A second solution is to provide sufficient buffering at the bottleneck resources (in relation to 

the Bandwidth*Delay product of the network). Sufficient buffering is a relative term and there is 

not a single optimum number for best performance under all circumstances. However, it is 

possible to estimate a range to cover a range of possible RTDs for a given bandwidth. This section 

attempts to do this by comparing the results of the two tests displayed in Figure 5 and Figure 8. 

Both of these tests are carried out at full DS3 rates with no rate control mechanism being exercised 

at the source IP routers (Router_l and Router_2). The major difference is that the performance 

curve in Figure 5 is collected through the small buffer ATM switch, and the curve in Figure 8 is 

collected through the large buffer ATM switch. The ratio of the buffer sizes is about 1:100. The 

small buffer switch has only a few hundreds of cell buffers per port whereas the large buffer 

switch has a few tens of thousands of cells per port. There was also no added network delay in 

the test whose results are presented in Figure 8. 
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The Bandwidth*Delay product for a 21msec DS3 network is approximately 2000 cells. Clearly, 

a switch buffer of a few hundred cells per port, less than the Bandwidth*Delay product, provides 

dismal performance. For example, the throughput in Figure 4 exhibits significant degradation at 

window sizes immediately after the window size at which it reaches its maximum of 17.5Mbps 

for both flows. On the other hand, a switch buffer of tens of thousands of cells per port performs 

well for a wide range of TCP window sizes as the throughput in Figure 7 is sustained at its 

maximum (around 17.5 Mbps for each of the flows) for a wide range of window sizes, almost up 

to 350 KiloByte windows per flow. The performance in Figure 8 suffers only after the large cell 

buffers in the switch run out (beyond 350 Kilobytes), and manifests itself in the form of either 
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domination (unfair bandwidth utilization between the two flows) or synchronization (poor 

performance for both flows), just as in Figure 5. Figure 5 displayed these undesirable performance 

effects immediately after reaching its maximum throughput due to the small per port buffers 

being exhausted rapidly. If there was an additional delay of 20 msec, the high throughput section 

of the graph in Figure 8 would have shifted right, to about 400 Kilobyte windows. No delay was 

intentionally added to determine the exact per port buffering in the ATM switch. 

By comparing the results in Figure 5 and Figure 8, one can see that sufficient cell buffers 

provide good throughput performance for a wide range of TCP window sizes. A switch buffer of 

tens of thousands of cells per port can comfortably accommodate up to 100msec RTDs over a DS3 

network. Thus, network delays that can possibly change during a TCP session won't likely 

degrade the performance characteristics of the session. However, with limited cell buffers, a 

change in RTD during a session may have quite a negative impact on the performance of the 

session. Fine tuning window size parameters to the Bandwidth*Delay product of the network is 

required with limited buffering in the ATM network. Such problems do not exist for larger buffer 

switches, as long as the window size is set larger than the Bandwidth*Delay product of the 

connection. Larger buffers have been considered and implemented by many ATM switch vendors 

already. The reduced costs of memory compared to a few years ago make it even a more viable 

and attractive solution. 

7 Conclusion 

This paper discusses two methods as solutions to guarantee acceptable TCP/IP performance 

over an ATM network. State of the art equipment is available in the market to implement either 

of the solutions.The paper presents experimental results collected over a TCP/IP over ATM 

research testbed to demonstrate the improved performance using these methods. One method is 

to provide rate shaping (CBR or VBR or other viable algorithms) at the entry to the ATM network, 

in proportion to the bandwidth of the bottleneck resources. The other method, which has 

significant advantages, is to provide ample buffering in the ATM switches. The superiority of the 

latter to the first is that it does not require provisioning of only a portion of the bandwidth to a 

PVC, thus the whole bandwidth can be statistically multiplexed among active TCP flows. In 
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theory, the first method also provides statistical multiplexing gain when leaky bucket 

mechanisms (VBR shaping) are used, however, it requires larger switch buffers as well in order to 

sustain simultaneous large bursts contending for the bottleneck resources. 

There are other methods suggested that would improve TCP/IP performance over ATM 

further such as Packet Discard algorithms and ABR. Since memory prices have dramatically 

decreased over the years, adding large buffers to ATM switches is the preferred choice and can be 

accompanied with any other performance improving method. Adequate buffering allows for 

increased Cell Delay Variation and also assures better performance for long latency data 

connections, whether they are cross-country or intercontinental connections that may span 

satellite links, which have considerably high RTDs. 
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